Metamath Proof Explorer


Theorem sbceq1g

Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005)

Ref Expression
Assertion sbceq1g AV[˙A/x]˙B=CA/xB=C

Proof

Step Hyp Ref Expression
1 sbceqg AV[˙A/x]˙B=CA/xB=A/xC
2 csbconstg AVA/xC=C
3 2 eqeq2d AVA/xB=A/xCA/xB=C
4 1 3 bitrd AV[˙A/x]˙B=CA/xB=C