Metamath Proof Explorer


Theorem sbceqal

Description: Class version of one implication of equvelv . (Contributed by Andrew Salmon, 28-Jun-2011) (Proof shortened by SN, 26-Oct-2024)

Ref Expression
Assertion sbceqal AVxx=Ax=BA=B

Proof

Step Hyp Ref Expression
1 eqeq1 x=Ax=AA=A
2 eqeq1 x=Ax=BA=B
3 1 2 imbi12d x=Ax=Ax=BA=AA=B
4 eqid A=A
5 4 a1bi A=BA=AA=B
6 3 5 bitr4di x=Ax=Ax=BA=B
7 6 spcgv AVxx=Ax=BA=B