Description: Class version of one implication of equvelv . (Contributed by Andrew Salmon, 28-Jun-2011) (Proof shortened by SN, 26-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sbceqal | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 | |
|
2 | eqeq1 | |
|
3 | 1 2 | imbi12d | |
4 | eqid | |
|
5 | 4 | a1bi | |
6 | 3 5 | bitr4di | |
7 | 6 | spcgv | |