Metamath Proof Explorer


Theorem sbceqbidf

Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018)

Ref Expression
Hypotheses sbceqbidf.1 x φ
sbceqbidf.2 φ A = B
sbceqbidf.3 φ ψ χ
Assertion sbceqbidf φ [˙A / x]˙ ψ [˙B / x]˙ χ

Proof

Step Hyp Ref Expression
1 sbceqbidf.1 x φ
2 sbceqbidf.2 φ A = B
3 sbceqbidf.3 φ ψ χ
4 1 3 abbid φ x | ψ = x | χ
5 2 4 eleq12d φ A x | ψ B x | χ
6 df-sbc [˙A / x]˙ ψ A x | ψ
7 df-sbc [˙B / x]˙ χ B x | χ
8 5 6 7 3bitr4g φ [˙A / x]˙ ψ [˙B / x]˙ χ