Metamath Proof Explorer


Theorem sbcim1OLD

Description: Obsolete version of sbcim1 as of 26-Oct-2024. (Contributed by NM, 17-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcim1OLD [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙φψAV
2 sbcimg AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
3 2 biimpd AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
4 1 3 mpcom [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ