Metamath Proof Explorer


Theorem sbcimg

Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004)

Ref Expression
Assertion sbcimg AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 dfsbcq2 y=Ayxφψ[˙A/x]˙φψ
2 dfsbcq2 y=Ayxφ[˙A/x]˙φ
3 dfsbcq2 y=Ayxψ[˙A/x]˙ψ
4 2 3 imbi12d y=Ayxφyxψ[˙A/x]˙φ[˙A/x]˙ψ
5 sbim yxφψyxφyxψ
6 1 4 5 vtoclbg AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ