Metamath Proof Explorer


Theorem sbcimdvOLD

Description: Obsolete version of sbcimdv as of 12-Oct-2024. (Contributed by NM, 11-Nov-2005) (Revised by NM, 17-Aug-2018) (Proof shortened by JJ, 7-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbcimdvOLD.1 φψχ
Assertion sbcimdvOLD φ[˙A/x]˙ψ[˙A/x]˙χ

Proof

Step Hyp Ref Expression
1 sbcimdvOLD.1 φψχ
2 sbcex [˙A/x]˙ψAV
3 1 alrimiv φxψχ
4 spsbc AVxψχ[˙A/x]˙ψχ
5 sbcim1 [˙A/x]˙ψχ[˙A/x]˙ψ[˙A/x]˙χ
6 3 4 5 syl56 AVφ[˙A/x]˙ψ[˙A/x]˙χ
7 6 com3l φ[˙A/x]˙ψAV[˙A/x]˙χ
8 2 7 mpdi φ[˙A/x]˙ψ[˙A/x]˙χ