Metamath Proof Explorer


Theorem sbcnestgw

Description: Nest the composition of two substitutions. Version of sbcnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Nov-2005) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion sbcnestgw AV[˙A/x]˙[˙B/y]˙φ[˙A/xB/y]˙φ

Proof

Step Hyp Ref Expression
1 nfv xφ
2 1 ax-gen yxφ
3 sbcnestgfw AVyxφ[˙A/x]˙[˙B/y]˙φ[˙A/xB/y]˙φ
4 2 3 mpan2 AV[˙A/x]˙[˙B/y]˙φ[˙A/xB/y]˙φ