Metamath Proof Explorer


Theorem csbnestgw

Description: Nest the composition of two substitutions. Version of csbnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion csbnestgw AVA/xB/yC=A/xB/yC

Proof

Step Hyp Ref Expression
1 nfcv _xC
2 1 ax-gen y_xC
3 csbnestgfw AVy_xCA/xB/yC=A/xB/yC
4 2 3 mpan2 AVA/xB/yC=A/xB/yC