Metamath Proof Explorer


Theorem csbnestgfw

Description: Nest the composition of two substitutions. Version of csbnestgf with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion csbnestgfw A V y _ x C A / x B / y C = A / x B / y C

Proof

Step Hyp Ref Expression
1 elex A V A V
2 df-csb B / y C = z | [˙B / y]˙ z C
3 2 abeq2i z B / y C [˙B / y]˙ z C
4 3 sbcbii [˙A / x]˙ z B / y C [˙A / x]˙ [˙B / y]˙ z C
5 nfcr _ x C x z C
6 5 alimi y _ x C y x z C
7 sbcnestgfw A V y x z C [˙A / x]˙ [˙B / y]˙ z C [˙ A / x B / y]˙ z C
8 6 7 sylan2 A V y _ x C [˙A / x]˙ [˙B / y]˙ z C [˙ A / x B / y]˙ z C
9 4 8 bitrid A V y _ x C [˙A / x]˙ z B / y C [˙ A / x B / y]˙ z C
10 9 abbidv A V y _ x C z | [˙A / x]˙ z B / y C = z | [˙ A / x B / y]˙ z C
11 1 10 sylan A V y _ x C z | [˙A / x]˙ z B / y C = z | [˙ A / x B / y]˙ z C
12 df-csb A / x B / y C = z | [˙A / x]˙ z B / y C
13 df-csb A / x B / y C = z | [˙ A / x B / y]˙ z C
14 11 12 13 3eqtr4g A V y _ x C A / x B / y C = A / x B / y C