Metamath Proof Explorer


Theorem sbcralg

Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion sbcralg AV[˙A/x]˙yBφyB[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 nfcv _yA
2 sbcralt AV_yA[˙A/x]˙yBφyB[˙A/x]˙φ
3 1 2 mpan2 AV[˙A/x]˙yBφyB[˙A/x]˙φ