Metamath Proof Explorer


Theorem sbcth

Description: A substitution into a theorem remains true (when A is a set). (Contributed by NM, 5-Nov-2005)

Ref Expression
Hypothesis sbcth.1 φ
Assertion sbcth AV[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 sbcth.1 φ
2 1 ax-gen xφ
3 spsbc AVxφ[˙A/x]˙φ
4 2 3 mpi AV[˙A/x]˙φ