Description: A substitution into a theorem remains true (when A is a set). (Contributed by NM, 5-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcth.1 | ⊢ 𝜑 | |
| Assertion | sbcth | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth.1 | ⊢ 𝜑 | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑥 𝜑 |
| 3 | spsbc | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 4 | 2 3 | mpi | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 / 𝑥 ] 𝜑 ) |