Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbcth2.1 | |
|
Assertion | sbcth2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth2.1 | |
|
2 | 1 | rgen | |
3 | rspsbc | |
|
4 | 2 3 | mpi | |