Metamath Proof Explorer


Theorem sbcth2

Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis sbcth2.1 xBφ
Assertion sbcth2 AB[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 sbcth2.1 xBφ
2 1 rgen xBφ
3 rspsbc ABxBφ[˙A/x]˙φ
4 2 3 mpi AB[˙A/x]˙φ