Metamath Proof Explorer


Theorem setchom

Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c C=SetCatU
setcbas.u φUV
setchomfval.h H=HomC
setchom.x φXU
setchom.y φYU
Assertion setchom φXHY=YX

Proof

Step Hyp Ref Expression
1 setcbas.c C=SetCatU
2 setcbas.u φUV
3 setchomfval.h H=HomC
4 setchom.x φXU
5 setchom.y φYU
6 1 2 3 setchomfval φH=xU,yUyx
7 simprr φx=Xy=Yy=Y
8 simprl φx=Xy=Yx=X
9 7 8 oveq12d φx=Xy=Yyx=YX
10 ovexd φYXV
11 6 9 4 5 10 ovmpod φXHY=YX