Metamath Proof Explorer


Theorem shsvsi

Description: Vector subtraction belongs to subspace sum. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 A S
shincl.2 B S
Assertion shsvsi C A D B C - D A + B

Proof

Step Hyp Ref Expression
1 shincl.1 A S
2 shincl.2 B S
3 shsvs A S B S C A D B C - D A + B
4 1 2 3 mp2an C A D B C - D A + B