Metamath Proof Explorer


Theorem simplr2

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simplr2 θ φ ψ χ τ ψ

Proof

Step Hyp Ref Expression
1 simp2 φ ψ χ ψ
2 1 ad2antlr θ φ ψ χ τ ψ