Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Functions on ordinals; strictly monotone ordinal functions smofvon  
				
		 
		
			
		 
		Description:   If B  is a strictly monotone ordinal function, and A  is in the
       domain of B  , then the value of the function at A  is an ordinal.
       (Contributed by Andrew Salmon , 20-Nov-2011) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					smofvon    ⊢    Smo  ⁡  B    ∧   A  ∈   dom  ⁡  B       →    B  ⁡  A   ∈  On         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							df-smo   ⊢   Smo  ⁡  B    ↔    B  :   dom  ⁡  B    ⟶  On    ∧   Ord  ⁡   dom  ⁡  B      ∧   ∀  x  ∈   dom  ⁡  B     ∀  y  ∈   dom  ⁡  B      x  ∈  y    →    B  ⁡  x   ∈   B  ⁡  y                
						
							2 
								1 
							 
							simp1bi   ⊢   Smo  ⁡  B    →   B  :   dom  ⁡  B    ⟶  On         
						
							3 
								2 
							 
							ffvelcdmda   ⊢    Smo  ⁡  B    ∧   A  ∈   dom  ⁡  B       →    B  ⁡  A   ∈  On