Metamath Proof Explorer


Theorem spcimgft

Description: A closed version of spcimgf . (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgft.1 xψ
spcimgft.2 _xA
Assertion spcimgft xx=AφψABxφψ

Proof

Step Hyp Ref Expression
1 spcimgft.1 xψ
2 spcimgft.2 _xA
3 elex ABAV
4 2 issetf AVxx=A
5 exim xx=Aφψxx=Axφψ
6 4 5 biimtrid xx=AφψAVxφψ
7 1 19.36 xφψxφψ
8 6 7 imbitrdi xx=AφψAVxφψ
9 3 8 syl5 xx=AφψABxφψ