Metamath Proof Explorer


Theorem speiv

Description: Inference from existential specialization. (Contributed by NM, 19-Aug-1993) (Revised by Wolf Lammen, 22-Oct-2023)

Ref Expression
Hypotheses speiv.1 x=yψφ
speiv.2 ψ
Assertion speiv xφ

Proof

Step Hyp Ref Expression
1 speiv.1 x=yψφ
2 speiv.2 ψ
3 2 hbth ψxψ
4 3 1 spimew ψxφ
5 2 4 ax-mp xφ