Metamath Proof Explorer


Theorem spimew

Description: Existential introduction, using implicit substitution. Compare Lemma 14 of Tarski p. 70. (Contributed by NM, 7-Aug-1994) (Proof shortened by Wolf Lammen, 22-Oct-2023)

Ref Expression
Hypotheses spimew.1 φxφ
spimew.2 x=yφψ
Assertion spimew φxψ

Proof

Step Hyp Ref Expression
1 spimew.1 φxφ
2 spimew.2 x=yφψ
3 ax6v ¬x¬x=y
4 2 speimfw ¬x¬x=yxφxψ
5 3 1 4 mpsyl φxψ