Metamath Proof Explorer


Theorem spfw

Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. Lemma 9 of KalishMontague p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)

Ref Expression
Hypotheses spfw.1 ¬ψx¬ψ
spfw.2 xφyxφ
spfw.3 ¬φy¬φ
spfw.4 x=yφψ
Assertion spfw xφφ

Proof

Step Hyp Ref Expression
1 spfw.1 ¬ψx¬ψ
2 spfw.2 xφyxφ
3 spfw.3 ¬φy¬φ
4 spfw.4 x=yφψ
5 4 biimpd x=yφψ
6 2 1 5 cbvaliw xφyψ
7 4 biimprd x=yψφ
8 7 equcoms y=xψφ
9 3 8 spimw yψφ
10 6 9 syl xφφ