Metamath Proof Explorer


Theorem spnfw

Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 1-Aug-2017) (Proof shortened by Wolf Lammen, 13-Aug-2017)

Ref Expression
Hypothesis spnfw.1 ¬φx¬φ
Assertion spnfw xφφ

Proof

Step Hyp Ref Expression
1 spnfw.1 ¬φx¬φ
2 idd x=yφφ
3 1 2 spimw xφφ