Metamath Proof Explorer


Theorem spnfw

Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 1-Aug-2017) (Proof shortened by Wolf Lammen, 13-Aug-2017)

Ref Expression
Hypothesis spnfw.1
|- ( -. ph -> A. x -. ph )
Assertion spnfw
|- ( A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 spnfw.1
 |-  ( -. ph -> A. x -. ph )
2 idd
 |-  ( x = y -> ( ph -> ph ) )
3 1 2 spimw
 |-  ( A. x ph -> ph )