Metamath Proof Explorer


Theorem spvw

Description: Version of sp when x does not occur in ph . Converse of ax-5 . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017) (Proof shortened by Wolf Lammen, 4-Dec-2017) Shorten 19.3v . (Revised by Wolf Lammen, 20-Oct-2023)

Ref Expression
Assertion spvw
|- ( A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 ax-5
 |-  ( -. ph -> A. x -. ph )
2 1 spnfw
 |-  ( A. x ph -> ph )