Metamath Proof Explorer


Theorem spsd

Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994)

Ref Expression
Hypothesis spsd.1 φψχ
Assertion spsd φxψχ

Proof

Step Hyp Ref Expression
1 spsd.1 φψχ
2 sp xψψ
3 2 1 syl5 φxψχ