Metamath Proof Explorer


Theorem sqeq0

Description: A complex number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006)

Ref Expression
Assertion sqeq0 AA2=0A=0

Proof

Step Hyp Ref Expression
1 2nn 2
2 expeq0 A2A2=0A=0
3 1 2 mpan2 AA2=0A=0