Metamath Proof Explorer


Theorem sseqtrrdi

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrrdi.1 φAB
sseqtrrdi.2 C=B
Assertion sseqtrrdi φAC

Proof

Step Hyp Ref Expression
1 sseqtrrdi.1 φAB
2 sseqtrrdi.2 C=B
3 2 eqcomi B=C
4 1 3 sseqtrdi φAC