Metamath Proof Explorer


Theorem ssexd

Description: A subclass of a set is a set. Deduction form of ssexg . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssexd.1 φBC
ssexd.2 φAB
Assertion ssexd φAV

Proof

Step Hyp Ref Expression
1 ssexd.1 φBC
2 ssexd.2 φAB
3 ssexg ABBCAV
4 2 1 3 syl2anc φAV