Metamath Proof Explorer


Theorem ssnelpssd

Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssnelpssd.1 φAB
ssnelpssd.2 φCB
ssnelpssd.3 φ¬CA
Assertion ssnelpssd φAB

Proof

Step Hyp Ref Expression
1 ssnelpssd.1 φAB
2 ssnelpssd.2 φCB
3 ssnelpssd.3 φ¬CA
4 ssnelpss ABCB¬CAAB
5 1 4 syl φCB¬CAAB
6 2 3 5 mp2and φAB