Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Subclasses and subsets ssnelpssd  
				
		 
		
			
		 
		Description:   Subclass inclusion with one element of the superclass missing is proper
       subclass inclusion.  Deduction form of ssnelpss  .  (Contributed by David Moews , 1-May-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ssnelpssd.1 ⊢  ( 𝜑   →  𝐴   ⊆  𝐵  )  
					
						ssnelpssd.2 ⊢  ( 𝜑   →  𝐶   ∈  𝐵  )  
					
						ssnelpssd.3 ⊢  ( 𝜑   →  ¬  𝐶   ∈  𝐴  )  
				
					Assertion 
					ssnelpssd ⊢   ( 𝜑   →  𝐴   ⊊  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ssnelpssd.1 ⊢  ( 𝜑   →  𝐴   ⊆  𝐵  )  
						
							2 
								
							 
							ssnelpssd.2 ⊢  ( 𝜑   →  𝐶   ∈  𝐵  )  
						
							3 
								
							 
							ssnelpssd.3 ⊢  ( 𝜑   →  ¬  𝐶   ∈  𝐴  )  
						
							4 
								
							 
							ssnelpss ⊢  ( 𝐴   ⊆  𝐵   →  ( ( 𝐶   ∈  𝐵   ∧  ¬  𝐶   ∈  𝐴  )  →  𝐴   ⊊  𝐵  ) )  
						
							5 
								1  4 
							 
							syl ⊢  ( 𝜑   →  ( ( 𝐶   ∈  𝐵   ∧  ¬  𝐶   ∈  𝐴  )  →  𝐴   ⊊  𝐵  ) )  
						
							6 
								2  3  5 
							 
							mp2and ⊢  ( 𝜑   →  𝐴   ⊊  𝐵  )