Description: If there is an element of a class which is not contained in a subclass, the subclass is a proper subclass. (Contributed by AV, 29-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssexnelpss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝑥 ∉ 𝐴 ) → 𝐴 ⊊ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nel | ⊢ ( 𝑥 ∉ 𝐴 ↔ ¬ 𝑥 ∈ 𝐴 ) | |
| 2 | ssnelpss | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐴 ⊊ 𝐵 ) ) | |
| 3 | 2 | expdimp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → 𝐴 ⊊ 𝐵 ) ) | 
| 4 | 1 3 | biimtrid | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∉ 𝐴 → 𝐴 ⊊ 𝐵 ) ) | 
| 5 | 4 | rexlimdva | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 𝑥 ∉ 𝐴 → 𝐴 ⊊ 𝐵 ) ) | 
| 6 | 5 | imp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝑥 ∉ 𝐴 ) → 𝐴 ⊊ 𝐵 ) |