Metamath Proof Explorer


Theorem ssprss

Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020)

Ref Expression
Assertion ssprss AVBWABCDA=CA=DB=CB=D

Proof

Step Hyp Ref Expression
1 prssg AVBWACDBCDABCD
2 elprg AVACDA=CA=D
3 elprg BWBCDB=CB=D
4 2 3 bi2anan9 AVBWACDBCDA=CA=DB=CB=D
5 1 4 bitr3d AVBWABCDA=CA=DB=CB=D