Metamath Proof Explorer


Theorem strfv3

Description: Variant on strfv for large structures. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Hypotheses strfv3.u φU=S
strfv3.s SStructX
strfv3.e E=SlotEndx
strfv3.n EndxCS
strfv3.c φCV
strfv3.a A=EU
Assertion strfv3 φA=C

Proof

Step Hyp Ref Expression
1 strfv3.u φU=S
2 strfv3.s SStructX
3 strfv3.e E=SlotEndx
4 strfv3.n EndxCS
5 strfv3.c φCV
6 strfv3.a A=EU
7 2 3 4 strfv CVC=ES
8 5 7 syl φC=ES
9 1 fveq2d φEU=ES
10 8 9 eqtr4d φC=EU
11 6 10 eqtr4id φA=C