Metamath Proof Explorer


Theorem strssd

Description: Deduction version of strss . (Contributed by Mario Carneiro, 15-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strssd.e E=SlotEndx
strssd.t φTV
strssd.f φFunT
strssd.s φST
strssd.n φEndxCS
Assertion strssd φET=ES

Proof

Step Hyp Ref Expression
1 strssd.e E=SlotEndx
2 strssd.t φTV
3 strssd.f φFunT
4 strssd.s φST
5 strssd.n φEndxCS
6 4 5 sseldd φEndxCT
7 1 2 3 6 strfvd φC=ET
8 2 4 ssexd φSV
9 funss STFunTFunS
10 4 3 9 sylc φFunS
11 1 8 10 5 strfvd φC=ES
12 7 11 eqtr3d φET=ES