Metamath Proof Explorer


Theorem strfvd

Description: Deduction version of strfv . (Contributed by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses strfvd.e E=SlotEndx
strfvd.s φSV
strfvd.f φFunS
strfvd.n φEndxCS
Assertion strfvd φC=ES

Proof

Step Hyp Ref Expression
1 strfvd.e E=SlotEndx
2 strfvd.s φSV
3 strfvd.f φFunS
4 strfvd.n φEndxCS
5 1 2 strfvnd φES=SEndx
6 funopfv FunSEndxCSSEndx=C
7 3 4 6 sylc φSEndx=C
8 5 7 eqtr2d φC=ES