Metamath Proof Explorer


Theorem strfvnd

Description: Deduction version of strfvn . (Contributed by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses strfvnd.c E=SlotN
strfvnd.f φSV
Assertion strfvnd φES=SN

Proof

Step Hyp Ref Expression
1 strfvnd.c E=SlotN
2 strfvnd.f φSV
3 elex SVSV
4 fveq1 x=SxN=SN
5 df-slot SlotN=xVxN
6 1 5 eqtri E=xVxN
7 fvex SNV
8 4 6 7 fvmpt SVES=SN
9 2 3 8 3syl φES=SN