Metamath Proof Explorer


Theorem sum2id

Description: The second class argument to a sum can be chosen so that it is always a set. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion sum2id kAB=kAIB

Proof

Step Hyp Ref Expression
1 sumeq2ii kAIB=IIBkAB=kAIB
2 fvex IBV
3 fvi IBVIIB=IB
4 2 3 ax-mp IIB=IB
5 4 eqcomi IB=IIB
6 5 a1i kAIB=IIB
7 1 6 mprg kAB=kAIB