Metamath Proof Explorer


Theorem sumsns

Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014)

Ref Expression
Assertion sumsns MVM/kAkMA=M/kA

Proof

Step Hyp Ref Expression
1 nfcv _nA
2 nfcsb1v _kn/kA
3 csbeq1a k=nA=n/kA
4 1 2 3 cbvsumi kMA=nMn/kA
5 csbeq1 n=Mn/kA=M/kA
6 5 sumsn MVM/kAnMn/kA=M/kA
7 4 6 eqtrid MVM/kAkMA=M/kA