Metamath Proof Explorer


Theorem supex

Description: A supremum is a set. (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis supex.1 ROrA
Assertion supex supBARV

Proof

Step Hyp Ref Expression
1 supex.1 ROrA
2 id ROrAROrA
3 2 supexd ROrAsupBARV
4 1 3 ax-mp supBARV