Metamath Proof Explorer


Theorem supubt

Description: Upper bound property of supremum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion supubt ROrAxAyB¬xRyyAyRxzByRzCB¬supBARRC

Proof

Step Hyp Ref Expression
1 simpl ROrAxAyB¬xRyyAyRxzByRzROrA
2 simpr ROrAxAyB¬xRyyAyRxzByRzxAyB¬xRyyAyRxzByRz
3 1 2 supub ROrAxAyB¬xRyyAyRxzByRzCB¬supBARRC