Metamath Proof Explorer


Theorem swrdccatin1d

Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by AV, 31-May-2018) (Revised by Mario Carneiro/AV, 21-Oct-2018)

Ref Expression
Hypotheses swrdccatind.l φA=L
swrdccatind.w φAWordVBWordV
swrdccatin1d.1 φM0N
swrdccatin1d.2 φN0L
Assertion swrdccatin1d φA++BsubstrMN=AsubstrMN

Proof

Step Hyp Ref Expression
1 swrdccatind.l φA=L
2 swrdccatind.w φAWordVBWordV
3 swrdccatin1d.1 φM0N
4 swrdccatin1d.2 φN0L
5 oveq2 A=L0A=0L
6 5 eleq2d A=LN0AN0L
7 4 6 imbitrrid A=LφN0A
8 1 7 mpcom φN0A
9 3 8 jca φM0NN0A
10 swrdccatin1 AWordVBWordVM0NN0AA++BsubstrMN=AsubstrMN
11 2 9 10 sylc φA++BsubstrMN=AsubstrMN