Metamath Proof Explorer


Theorem syl10

Description: A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011)

Ref Expression
Hypotheses syl10.1 φψχ
syl10.2 φψθτ
syl10.3 χτη
Assertion syl10 φψθη

Proof

Step Hyp Ref Expression
1 syl10.1 φψχ
2 syl10.2 φψθτ
3 syl10.3 χτη
4 1 3 syl6 φψτη
5 2 4 syldd φψθη