Metamath Proof Explorer


Theorem syl3an12

Description: A double syllogism inference. (Contributed by SN, 15-Sep-2024)

Ref Expression
Hypotheses syl3an12.1 φψ
syl3an12.2 χθ
syl3an12.s ψθτη
Assertion syl3an12 φχτη

Proof

Step Hyp Ref Expression
1 syl3an12.1 φψ
2 syl3an12.2 χθ
3 syl3an12.s ψθτη
4 id ττ
5 1 2 4 3 syl3an φχτη