Description: A double syllogism inference. (Contributed by SN, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3an12.1 | |- ( ph -> ps ) |
|
| syl3an12.2 | |- ( ch -> th ) |
||
| syl3an12.s | |- ( ( ps /\ th /\ ta ) -> et ) |
||
| Assertion | syl3an12 | |- ( ( ph /\ ch /\ ta ) -> et ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an12.1 | |- ( ph -> ps ) |
|
| 2 | syl3an12.2 | |- ( ch -> th ) |
|
| 3 | syl3an12.s | |- ( ( ps /\ th /\ ta ) -> et ) |
|
| 4 | id | |- ( ta -> ta ) |
|
| 5 | 1 2 4 3 | syl3an | |- ( ( ph /\ ch /\ ta ) -> et ) |