Metamath Proof Explorer


Theorem syl3an12

Description: A double syllogism inference. (Contributed by SN, 15-Sep-2024)

Ref Expression
Hypotheses syl3an12.1
|- ( ph -> ps )
syl3an12.2
|- ( ch -> th )
syl3an12.s
|- ( ( ps /\ th /\ ta ) -> et )
Assertion syl3an12
|- ( ( ph /\ ch /\ ta ) -> et )

Proof

Step Hyp Ref Expression
1 syl3an12.1
 |-  ( ph -> ps )
2 syl3an12.2
 |-  ( ch -> th )
3 syl3an12.s
 |-  ( ( ps /\ th /\ ta ) -> et )
4 id
 |-  ( ta -> ta )
5 1 2 4 3 syl3an
 |-  ( ( ph /\ ch /\ ta ) -> et )