Description: A double syllogism inference. (Contributed by SN, 15-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3an12.1 | |- ( ph -> ps ) |
|
syl3an12.2 | |- ( ch -> th ) |
||
syl3an12.s | |- ( ( ps /\ th /\ ta ) -> et ) |
||
Assertion | syl3an12 | |- ( ( ph /\ ch /\ ta ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an12.1 | |- ( ph -> ps ) |
|
2 | syl3an12.2 | |- ( ch -> th ) |
|
3 | syl3an12.s | |- ( ( ps /\ th /\ ta ) -> et ) |
|
4 | id | |- ( ta -> ta ) |
|
5 | 1 2 4 3 | syl3an | |- ( ( ph /\ ch /\ ta ) -> et ) |