Description: A true statement is true upon substitution (deduction). A similar proof is possible for icht . (Contributed by SN, 4-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbtd.1 | |- ( ph -> ps ) |
|
Assertion | sbtd | |- ( ph -> [ t / x ] ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbtd.1 | |- ( ph -> ps ) |
|
2 | 1 | alrimiv | |- ( ph -> A. x ps ) |
3 | stdpc4 | |- ( A. x ps -> [ t / x ] ps ) |
|
4 | 2 3 | syl | |- ( ph -> [ t / x ] ps ) |