Description: A true statement is true upon substitution (deduction). A similar proof is possible for icht . (Contributed by SN, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbtd.1 | |- ( ph -> ps ) |
|
| Assertion | sbtd | |- ( ph -> [ t / x ] ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbtd.1 | |- ( ph -> ps ) |
|
| 2 | 1 | alrimiv | |- ( ph -> A. x ps ) |
| 3 | stdpc4 | |- ( A. x ps -> [ t / x ] ps ) |
|
| 4 | 2 3 | syl | |- ( ph -> [ t / x ] ps ) |