Description: A true statement is true upon substitution (deduction). A similar proof is possible for icht . (Contributed by SN, 4-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbtd.1 | ⊢ ( 𝜑 → 𝜓 ) | |
Assertion | sbtd | ⊢ ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbtd.1 | ⊢ ( 𝜑 → 𝜓 ) | |
2 | 1 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 𝜓 ) |
3 | stdpc4 | ⊢ ( ∀ 𝑥 𝜓 → [ 𝑡 / 𝑥 ] 𝜓 ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜓 ) |