Description: One direction of sbor , using fewer axioms. Compare 19.33 . (Contributed by Steven Nguyen, 18-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | sbor2 | |- ( ( [ t / x ] ph \/ [ t / x ] ps ) -> [ t / x ] ( ph \/ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | |- ( ph -> ( ph \/ ps ) ) |
|
2 | 1 | sbimi | |- ( [ t / x ] ph -> [ t / x ] ( ph \/ ps ) ) |
3 | olc | |- ( ps -> ( ph \/ ps ) ) |
|
4 | 3 | sbimi | |- ( [ t / x ] ps -> [ t / x ] ( ph \/ ps ) ) |
5 | 2 4 | jaoi | |- ( ( [ t / x ] ph \/ [ t / x ] ps ) -> [ t / x ] ( ph \/ ps ) ) |