Metamath Proof Explorer


Theorem sbor2

Description: One direction of sbor , using fewer axioms. Compare 19.33 . (Contributed by Steven Nguyen, 18-Aug-2023)

Ref Expression
Assertion sbor2 t x φ t x ψ t x φ ψ

Proof

Step Hyp Ref Expression
1 orc φ φ ψ
2 1 sbimi t x φ t x φ ψ
3 olc ψ φ ψ
4 3 sbimi t x ψ t x φ ψ
5 2 4 jaoi t x φ t x ψ t x φ ψ