Metamath Proof Explorer


Theorem sbor2

Description: One direction of sbor , using fewer axioms. Compare 19.33 . (Contributed by Steven Nguyen, 18-Aug-2023)

Ref Expression
Assertion sbor2 txφtxψtxφψ

Proof

Step Hyp Ref Expression
1 orc φφψ
2 1 sbimi txφtxφψ
3 olc ψφψ
4 3 sbimi txψtxφψ
5 2 4 jaoi txφtxψtxφψ