| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbim |
|- ( [ y / x ] ( -. ph -> ps ) <-> ( [ y / x ] -. ph -> [ y / x ] ps ) ) |
| 2 |
|
sbn |
|- ( [ y / x ] -. ph <-> -. [ y / x ] ph ) |
| 3 |
2
|
imbi1i |
|- ( ( [ y / x ] -. ph -> [ y / x ] ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
| 4 |
1 3
|
bitri |
|- ( [ y / x ] ( -. ph -> ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
| 5 |
|
df-or |
|- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
| 6 |
5
|
sbbii |
|- ( [ y / x ] ( ph \/ ps ) <-> [ y / x ] ( -. ph -> ps ) ) |
| 7 |
|
df-or |
|- ( ( [ y / x ] ph \/ [ y / x ] ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
| 8 |
4 6 7
|
3bitr4i |
|- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |