Metamath Proof Explorer


Theorem syl3an2b

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an2b.1 φχ
syl3an2b.2 ψχθτ
Assertion syl3an2b ψφθτ

Proof

Step Hyp Ref Expression
1 syl3an2b.1 φχ
2 syl3an2b.2 ψχθτ
3 1 biimpi φχ
4 3 2 syl3an2 ψφθτ